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Note 

Expeditious Vlasov Solver for 
Ion Extraction from a 

Ion extraction and transport through an accelerating structure have many 
applications. Recently an algorithm has been developed which is able to solve for the 
plasma sheath explicitly [l] and has found application for the design of acce~era~~~g 
structures for intense neutral beam injectors for fusion research [2]. unfortunately, 
the computational speed of the algorithm makes resource allocation a pro 
Described here is an alternative Vlasov solver and Poisson-Vlasov iteration scheme 
which increases the expeditiousness of the Computation by more than a factor of IO. 

The Poisson Vlasov system of equations solved are described in Ref. 131; in 
particular, Vlasov’s equation for the ions 

is solved directly by considering the equations of motion of a specified initial 
distribution function (see Fig. 1). Previously Hamilton’s equations for the ion motion 
were considered by an ODE solved using a deferred limit integrator [II?, pp. 19-23; 
31. An alternative to this approach is to assume in each ceil, for which the Poisson 
equation is solved, that the electric field is a constant from which it follows that the 
ion trajectory is a parabola. 

This scheme is shown in Fig. 2 for N = 1. Since the acceleration interpolator \ 1 b, 
pp. 29-31; 41, generates accelerations which are linear over a Poisson solution cell, 
one can obtain useful refinement by subdividing a mesh only for the purpose of orbit 
refinement. This is shown in Fig. 2 for N > 1; utilization of orbit refinement takes 
place only when, without it, the radial acceleration, a,, would be greater than 
jk&/z,,,, /, where k is typically 0.01, 2rz0 is the initial axial component of velocity, 
and z ce,l = the axial length of a finite difference mesh cell. Using this metb~ of 
refinement is far less time consuming than increasing the number of mesh points on 
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FIG. 1. Typical converged solution for the Poisson-Vlasov system showing ion trajectories by solid 
lines and equipotential contours by dotted lines. Subspace refinement is only done in those space regions 
in which a significant deflection occurs. 
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FIG. 2. Flow diagram for new Vlasov solver for the simp!e case of no orbit reversal. 

which the entire Poisson-Viasov ‘system is considered and is frequently just as 
effective. For the simplest case where the orbits do not tnrn around, in the mesh 
considered, and are traveling in the optic axis direction (z> and within the boun 
the trajectory is determined from the calculations in the foilowing order: 

V zl = [(vzo)’ - 2a,(z, -z,)]“*, 

t= 

t= 

uy1= V. 

z2 -21 

V Zl 

V rl - vzo 

a, 

v. + ad. 
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Useful values of k and N are 0.01 and 6, respectively, for typical problems we 
consider. The area enclosed by the dotted lines in Fig. 2 replace the deferred limit 
integrator in Ref. [lb, pp. 19-231. The act of replacing the deferred limit integration 
with parabolas with refinement reduces the trajectory calculation by a factor of over 
15 as shown in Fig. 3 by Vlasov computation time. This scheme is not unlike a 
Vlasov solver used previously [5] without refinement. However, the Poisson solver to 
which it couples has occasional convergence difficulties, due to the exponentially 
nonlinear electron contribution, which are claimed to be remedied by the Poisson 
solver of Refs. [ 1 ] or [3 J. 

Because the computation time was dominated by the Vlasov solver with the 
deferred limit integrator, as shown the case with n = 40 in Fig. 3, where 20% of the 
time is typically spent in the Poisson calculation there was no need to cut corners 
with the Poisson solver computational time (which has already been reduced substan- 
tially in Ref. [I] over that of Refs. [3, 4, 51). The Poisson-Vlasov iteration scheme 
for the top two curves in Fig. 3 is shown in Fig. 4 for which convergence of the 
Poisson equation is obtained before a Vlasov iteration (sequential convergence) [l, 4, 
61. Convergence of the Poisson Vlasov system is considered to obtain when the ion 
beam divergence, 8, does not change upon further iteration. However, the new Vlasov 
solver is typically a factor of 15 faster than the old so the same time spent in Poisson 
computation would amount to about 78% of the computational work. Therefore it is 
worthwhile examining the Poisson-Vlasov iteration scheme. Using a simultaneous 
iteration scheme, as shown in Fig. 5, where the Vlasov iteration is made prior to 
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FIG. 3. Computation time, in units of IBM 360/195 seconds, as a function of number of orbits per 
Vlasov iteration shown for each of two schemes. 
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FIG. 4. Flow diagram for sequential Poisson-Vlasov i?eration scheme. 

FIG. 5. Flow diagram for simultaneous Poisson-Viason iteration scheme. 

convergence of the Poisson equation, a decrease in computational time of the Poisson 
solver of a factor of 8 is obtained without any loss in accuracy. The total amount of 
work the Poisson solver has to do for the iteration scheme shown in Fig. 5 is abort 
that needed for the convergence of the vacuum fields. For the particular’ case 
examined above an overall gain of a factor of 12 in increase of computational s 
is achieved. 
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